
Modeling and Automating the Cyber
Reverse Engineering Cognitive Process

Patrick P. Dudenhofer
patrickdude@cedarville.edu

Cedarville University

251 N. Main St. Cedarville, OH 45314

Abstract - Software reverse engineers (SREs) face a significant cognitive
load when analyzing unknown binary artifacts for security vulnerabilities or
malicious intent. The ability to automate or augment these complex reverse
engineering tasks would provide a substantial benefit both for the training and
productivity of binary analysis work. Such computational support requires a
formal model of the reverse engineer's knowledge and operations but little
research effort has been expended toward understanding the cognitive aspects
of the software reverse engineering process. SREs often begin the reverse
engineering process by exploring the binary executable's artifacts to discover
information cues that correspond with their own abstract knowledge of the
cyber security domain. Upon discovering an interesting information cue, the
SREs integrate that new data into their working hypothesis of the program's
behavior. As additional information cues are uncovered, these cues shape and
elaborate upon SREs’ current hypothesis of the software's purpose and also
serve as indicators for additional exploration vectors. This paper proposes a
cognitive model detailing the mental constructs and processes required for
successfully completing a software reverse engineering task. The cognitive
model described will facilitate accelerated development of automation and
interface aids for complex binary analysis tasks.

Keywords

Software reverse engineering, binary analysis, cognitive modeling, human-
computer interaction

The Colloquium for Information System Security Education (CISSE)
June, 2019

2

1. INTRODUCTION

In the domain of cyber security, software reverse engineering (SRE) is a
complex problem [1] and a critical task for cyber security professionals [2].
Software security threats do not come with step-by-step instructions on how to
identify, prevent, or even understand what a piece of software is intended to
accomplish [3]. Without the availability of high-level, easily-readable source
code and documentation, reverse engineers must determine what the malware
is programmed to accomplish by reconstructing programming logic from the
binary representation - the ones and zeros - of the executable files. Software
reverse engineers (specifically, binary analysts) must be able to identify key
software constructs and features from very low-level assembly code
instructions and mentally reconstruct a program’s control structures to
determine the software’s purpose [4]. The time and training constraints needed
to develop proficient software reverse engineers can be partially addressed by
designing automation and interfaces that support and augment reverse
engineers as they analyze unknown software. Building a solid theoretical
foundation describing the tasks and processes used by professional reverse
engineers will inform and direct the development of advanced human-
computer interfaces (HCI) and automated agents to aid cognitively complex
software reverse engineering tasks.

1.1 Motivation

The number and sophistication of cyber-attacks has increased markedly in
the past few years [5]. Managing all the incoming attacks is difficult and cyber
defense professionals struggle just to "keep in the same place" [6]. Beyond
increasing the workforce, cutting-edge software tools are desperately needed
to stay abreast of emerging cyber security threats. Automated binary analysis
agents and improved human-computer interfaces will speed up the process of
standard classification and analysis techniques, decrease the learning curve for
new cyber-security professionals, and increase the identification of and
analysis throughput for potential software vulnerabilities and their
corresponding exploits [7].

The Colloquium for Information System Security Education (CISSE)
June, 2019

3

1.2 Research Problem

The term “software reverse engineering” refers to the activities involved in
reconstructing a useful and meaningful representation of a program [8]. One
must work backward (or reverse engineer) to undo the compilation processes
that originally created the executable program from its source code to learn the
intended behavior of the software under analysis [9]. Comprehending a
program from its compiled binary file involves abstracting low-level data
representations into high-level concepts [10] and using the resulting mental
models of concepts, programming plans, and control flow representations to
synthesize both environment and learned information together into a coherent
model of the program [11]. Investigating unknown software without executing
the code is called static analysis. Alternatively, running an executable to
determine its behavior is known as dynamic analysis. In this paper the term
"binary analysis" is used to refer to the process of program comprehension
using visual inspection only of software artifacts (primarily assembly code
representations) without actively running the software being analyzed. Binary
analysis is a significant subset of the tasks typically performed when SREs
attempt to understand an unknown program's purpose and behavior. Program
comprehension, particularly with only a binary representation, is a cognitively
challenging activity and knowledge-intensive task [12]. Both human-computer
interfaces and automated agents should be designed to support the reverse
engineer's cognitive processes allowing the engineer to focus on the tasks that
are best performed by a human.

Though many tools have been developed to automate some of the tasks
involved in binary analysis, most have not explicitly taken into consideration
the complex cognitive aspects of reverse engineering. Software reverse
engineers often create their own ad-hoc software tools [13] without thorough
consideration for which tasks would actually benefit from automation or
interface support. Designing automation aids that facilitate more effective
reverse engineering techniques requires a knowledge of which tasks are
cognitively difficult and why. Researchers have described reverse engineering
tasks using formal ontologies [14] while others have characterized the reverse

The Colloquium for Information System Security Education (CISSE)
June, 2019

4

engineer’s goals and processes [15]. Other research has captured analysts’
cognitive processes during dynamic cyber-attacks [16] and proposed a
mathematical model of human-computer interactions in a binary analysis task
[17]. Any automation and HCI advancements will likely be ineffective without
task and cognitive models that reflect an expert reverse engineer’s cognitive
process [18]. Ultimately, researchers need to know how to efficiently allocate
and apply automation within the software reverse engineering domain.

1.3 Research Direction

The primary question to be addressed here is “How can we leverage the
cognitive process of an expert software reverse engineer to support the training
of novice binary analysts via automated software agents?” With an SRE
cognitive model, research and development can proceed to augment the binary
analysis process with automated agents in order to offload cognitively difficult
parts of the task.

This paper presents a descriptive framework of the binary analysis
cognitive process along with a prototype analysis tool illustrating the cognitive
model’s effectiveness and applicability. Consequently, researchers will be able
to focus their automation and interface design efforts in areas that will most
benefit software reverse engineers using the very patterns human experts use
to complete their work.

2. LITERATURE REVIEW

Program (or software) comprehension is a human-intensive process
requiring the extraction of sufficient information from software artifacts or
systems via analysis and intuition to accomplish a given task. Missing or out-
of-date documentation increases the challenge of deriving the necessary
knowledge from the software. When a compiled executable is the only
available artifact for observation, comprehension is even more difficult for the
reverse engineer. Much of the original programmer’s thinking is lost in the
translation from program concept to executable code [17].

The Colloquium for Information System Security Education (CISSE)
June, 2019

5

2.1 Program Comprehension

Program "comprehension involves the assignment of meaning to a
particular program," requiring specialized knowledge to perform successfully
[20]. The general approach in most program comprehension tasks is to consider
the program as a text that parallels natural language texts such as instruction
manuals. Reading program code is a preferred option for comprehension,
rather than documentation or execution, as it provides a factual and true
representation of the program [21]. The perception (and mental model) of the
text is affected both by analysts’ past experiences and by how analysts break
the text into structural segments while organizing their mental representational
framework.

Fix, et al. evaluated the differences between groups of experts and novices
attempting to comprehend a program [22]. They found experts extracted many
different kinds of program information and integrated that knowledge with
their mental representations while novices did not exhibit as effective mental
representations of the program. Some of the skills the research highlighted for
creating a successful mental representation included skill in recognizing basic
recurring patterns, in understanding program structure, and in distinguishing
links between program modules. Developing a good mental representation is
essential for effectively comprehending program behavior.

2.2 Information Cues

In researching software maintenance tasks, Ko, et al. proposed a model of
program comprehension that reflects a process of searching, relating, and
collecting relevant information [24]. Developers form perceptions of relevance
from clear, representative cues in the environment. In the cycle of relating and
connecting fragments of information together, when no more relevant cues
exist the developer stops that particular thread of relating and begins
correlating other fragments of information. Once enough information
fragments have been collected to implement a solution to the task, the
developer stops performing the cycle of searching, relating, and collecting and
proceeds to use the information he has gathered.

The Colloquium for Information System Security Education (CISSE)
June, 2019

6

Kulkarni and Varma also investigated developers facing the problem of
comprehending unfamiliar programs [23]. They discovered experts follow an
"information scent" and place a perceived value on information based on cues
to facilitate their navigation and searching in the program. The authors posit
all developers follow the same information scents while comprehending an
unfamiliar code and eventually develop a similar perception of program
behavior regardless of expertise. They also found that developers used "an
abstractive rather than extractive approach" to gleaning information from the
source code. Experts, as they "forage" for information by means of identifying
cues, overcome information overload by relying on cues to assist the
development of a mental model of program behavior. Identifying and
understanding both the explicit and implicit cues can aid program
comprehension and mental model development.

Studies have shown developers can spend up to 35 percent of their time
navigating through software code and associated artifacts [24]. Lawrance et al.
found programmers performing a debugging task acted in a manner consistent
with information foraging theory by following "scent" cues to navigate through
the source code [25]. This theory led the authors to state that software
engineering tools can and should support "scent following" mechanisms.
Developers should identify informational cues associated with the information
domain and the tools' supported tasks. Those cues will empower programmers
to navigate more quickly through code toward their goal.

2.3 Software Reverse Engineering

Software reverse engineering is a broad term involving myriad
methodologies and tools used to extract information and knowledge from
software artifacts. Chikofsky and Cross define software reverse engineering as
“the process of analyzing a subject system to identify the system’s components
and their interrelationships and create representations of the system in another
form or at a higher level of abstraction” [10]. Reverse engineering is a process
of observation and examination, not alteration. As such, software reverse
engineering is primarily an observation process to determine construction and

The Colloquium for Information System Security Education (CISSE)
June, 2019

7

usage of software - performed in wide range of contexts and for many different
purposes.

LaToza et al. suggest "expert developers can easily navigate in a complex
code because they seek precise evidence of relevance to the task when faced
with the decision to investigate an unfamiliar code" [26]. Experts perform
better in software reverse engineering tasks because they have access to
knowledge that novices do not [23]. Reverse engineers need to be able to
identify relevant evidence and artifacts to inform future actions and analysis.

The binary analyst uses several different kinds of artifacts in the software
reverse engineering process. Tilley classifies the artifact categories as data
(factual information), knowledge (the sum of what is known - including
relationships between data), and information (communicated knowledge) [27].
In terms of data (factual information) the primary artifact referenced in the SRE
process is the binary executable file under analysis. This executable code is
disassembled into thousands of assembly language instructions. These
instructions accurately model how the program behaves on a computer's
processor, but they do not always directly reflect the high-level abstract
concepts and constructs many programmers use to describe how a program
works. The process of compiling a program from a high-level language into a
binary executable strips much of the semantic information and structure away
from the assembly code representation making the program all the more
difficult to comprehend. A software reverse engineer is almost always
restricted to assembly code only in their analysis tasks [19]. Beyond an
understanding of assembly languages, reverse engineers need to have a
working knowledge of operating systems and associated system calls, memory
management, and vulnerability exploitation and defense.

In gathering information, SREs use a wide range of tools, some commercial
and others created in an ad hoc manner as specific needs arise. Each tool
provides a unique environment for the representation of information pertaining
to the observed binary file - potentially adding additional cognitive challenges
for the reverse engineer in comprehending the program.

The Colloquium for Information System Security Education (CISSE)
June, 2019

8

2.4 Abduction in Reverse Engineering

Abductive logic is used when a person who is assessing a situation is
surprised by unexpected events or information and subsequently tries make
sense of things though further inquiries [28]. Abduction is a form of logical
inference that begins with a set of observations and then attempts to find the
simplest and most likely explanation. A surprised person utilizes abduction to
develop new hypotheses about a situation after recognizing the current
situation invalidates a previously-held hypothesis [19]. The observer can
continue to confirm or disprove new hypotheses though additional inquiries
and use of deductive and inductive reasoning. These additional actions can
refine the observer's knowledge and hypotheses of the situation [28]. Weigand
states an expert's experience enables them to recognize situations encountered
in the past and establish the relative importance of each perceptual cue [19].

Applied to reverse engineering, abduction provides a "generative means of
inference" essential to an exploration of code requiring "non-deductive and
non-inductive hypothesis generation” [19]. The reverse engineer uses
abduction to handle falsified hypotheses and observational surprises, shift their
plans of action, and modify their working hypotheses. Reverse engineers
typically select hypotheses that are models of previously encountered
behaviors or constructs. Detecting when a working hypothesis is proven
incorrect is a critical aspect for a successful abductive inquiry in reverse
engineering [11].

2.5 Sensemaking in Reverse Engineering

Sensemaking, a process where people attempt to understand complex
situations to make reasonable decisions, is enabled by abductive inference [28].
Bryant, et al. make the case that software reverse engineering is a type of
sensemaking process [11]. Similar to other sensemaking processes (such as the
scientific method), reverse engineering requires information discovery,
development of a mental model (hypothesis) using the discovered data, and
integration of the mental model with additional artifact data and the analyst's
background knowledge.

The Colloquium for Information System Security Education (CISSE)
June, 2019

9

2.6 Looking Forward

Software reverse engineering can been described in several different, yet
compatible ways. Generally it is described as a process of abstraction from
low-level representations to high-level concepts. Others view it as a set of
interconnected analysis tasks. As previously noted, Tilley describes software
reverse engineering as transforming software artifacts into a mental model
through pattern recognition to create "abstract system representations” [27].
Each of these descriptions capture unique facets of what makes SRE a
challenging task.

While software reverse engineering has been described a few times in the
research literature using cognitive models and related concepts, very little
research has been focused on the binary analysis task itself or on how the
cognitive models can be leveraged by automated software agents to support
and aid novices in the field. This is a large gap in current cyber security
research. The question remains: how can the concepts of abductive reasoning,
sense-making, information scent, cues, cognitive modeling, and program
comprehension be used to effectively support the novice software reverse
engineer in static binary analysis tasks?

3. SRE COGNITIVE MODEL

Before effective reverse engineering automation aids can be created,
researchers need to understand the tasks software reverse engineers perform in
cyber security and the meta-process by which they accomplish those tasks.
Once the process and tasks performed by reverse engineers are adequately
described computational agents can model some of the same activities.

The software reverse engineering process requires binary analysts to
integrate detailed background knowledge with newly discovered contextual
information in order to extract an executable program's specifications and
intentions. As noted before, comprehending the purpose and workings of a
piece of binary software, without the aid of documentation and source files, is
a difficult task. Binary analysis requires a broad understanding of computer

The Colloquium for Information System Security Education (CISSE)
June, 2019

10

hardware, operating systems, programming languages, and software
vulnerabilities. Current software analysis tools provide limited cognitive
support to software reverse engineers either in the form of helpful interfaces or
in automated software agents. A cognitive model of reverse engineering will
enable researchers and developers to better understand the mental processes
used in binary analysis of software.

Given expert reverse engineers employ a type of sensemaking process for
comprehending assembly code, software developers can build pieces of an
automated agent to support that process. Such an agent will need to mimic at
least a few of the sensemaking steps that a binary analyst uses - otherwise it's
unlikely to support the cognitive process of the reverse engineer. Creating a
fully autonomous agent would prove difficult, but an automated aid that
augments the SRE task and cognitively supports the binary analyst is possible.

3.1 Overview of the CURE Cognitive Model

The CURE (Cognitive Understanding of Reverse Engineering) model of
SRE cognition (Figure 1) describes how so-called "interesting" properties or
cues of a binary executable are elicited via a series of iterative experiments by
an analyst. In general, the process of binary analysis consists of transforming
information from a low-level language representation of an executable to a
high-level mental model. To do so, binary analysts typically explore an
unknown piece of software for interesting informational cues that they have
previously memorized and now recall from their background knowledge of the
SRE domain. Once such a cue is found the analyst creates one or more behavior
hypotheses for the program based on their current knowledge of abstract
program behavior concepts. The binary is then analyzed, through a series of
iterations, for additional information that would support or negate the analyst's
hypothesis until some confidence level for the veracity of the hypothesis can
be achieved. The number of iterations required depends on the level of
understanding needed concerning the binary. The desired level of
understanding ranges from simple categorization to complete re-creation of a
binary file's functionality. Simple categorization would require only a few

The Colloquium for Information System Security Education (CISSE)
June, 2019

11

iterations of the locate-elaborate loop after identifying an initial information
cue. However, functional re-creation of a binary artifact would require many,
many iterations of the proposed cognitive algorithm.

Figure 1. CURE Model of SRE Cognition

This model demonstrates a type of abductive reasoning - inference to the
best explanation. Just because a set of observations have been made and
support a certain conclusion (i.e. the hypothesis), they do not necessarily
guarantee that particular conclusion.

3.1.1 Exploration

As the binary analyst begins the software reverse engineering process, only
a vague idea of the binary executable's behavior may exist as the analyst’s
mental model. The analyst initially doesn't know the program's purpose or
functionality and begins exploring the executable's external artifacts and its

The Colloquium for Information System Security Education (CISSE)
June, 2019

12

assembly code for information cues. Until some sort of "interesting" cue is
found, the analyst continues searching for pertinent structural or behavioral
information.

3.1.2 Recognition of an Interesting Information Cue

Recognition of an information cue involves the analyst making a mental
connection between his abstract background knowledge of program behavior
(and related attributes) with a specific software artifact or chunk of assembly
code. This is the "ah ha" moment after which the analyst can narrow his search
space based on the implications of that artifact's presence within the program.
Additional cues may be found as well - and so working memory becomes a
stack of "interesting" information cues used to generate new hypotheses or
support existing ones. These additional cues may interrupt the process or be
returned to later in the process to further enable understanding of the binary’s
functionality.

3.1.3 Hypothesis Creation

After an information cue is discovered, the analyst creates a behavioral
hypothesis for the still unknown software. This labeling of potential behavior
draws on the analyst's previous knowledge of the abstract concepts in the field
of computer science and software security. Additional artifacts from the binary
will end up supporting or refuting the chosen behavior hypothesis of the analyst.

3.1.4 Locate-Elaborate Loop

With a hypothesis created, the analyst begins a second process of
exploration with the goal of evaluating the hypothesis. The abstract concepts
from the background knowledge of the analyst are slowly filled in with
concrete artifacts as part of his mental model of the program. As additional
information is gathered, either the required pieces of the mental model are
located to support the analyst's hypothesis or else the hypothesis cannot be
supported from the available artifacts and assembly code. Depending on the
required level of understanding for the task at large, supporting information
such as parameters, return values, outgoing functions, and data usage can be

The Colloquium for Information System Security Education (CISSE)
June, 2019

13

elaborated and used to populate the analyst's mental model of the software's
functionality.

If an artifact is found that does not match or fit within the analyst's current
hypothesis, the current mental model must be modified or discarded. The
discovery may either signal the end of the task (since a potential hypothesized
behavior has been eliminated from consideration) or indicate the need to start
from scratch with a new hypothesis that can accommodate the new information
along with all the previously discovered structures and behaviors of the binary
executable.

4. CURE ASSISTANT SRE AUTOMATED AID

Leveraging concepts from the CURE cognitive model, a software program
called CURE Assistant [29] was developed to help novice reverse engineers
recognize important and interesting artifact cues while performing binary
analysis tasks (Figure 2). An undergraduate computer science senior design
team at Cedarville University under the direction of the author implemented
CURE Assistant to be an automated aid supporting program comprehension
and cognitive model development of unknown binary files [30].

CURE Assistant was designed to support a novice in the discovery of
information cues and artifacts that would normally be quickly recognized by
an expert malware analyst. It is not a fully automated software agent. It is a
python program that executes alongside radare2 [31], a command-line-based
software reversing framework, to provide “interesting” artifact (i.e. cue)
suggestions to the analyst while filling in gaps of their program comprehension
and domain knowledge. Analysts can easily perform further investigations on
suggested artifact cues within the standard interface of radare2 by using CURE
Assistant’s interface linkages to the reversing framework.

CURE Assistant searches for interesting artifacts (i.e. snippets of assembly
code) in the binary and suggests potential program behaviors based on the
existence or non-existence of those artifacts. By providing both relevant
artifacts and potential behavior descriptions that utilize those artifacts, CURE

The Colloquium for Information System Security Education (CISSE)
June, 2019

14

Assistant supports the exploration, the information cue recognition, and
hypothesis creation components of the CURE cognitive model.

Figure 2. CURE Assistant Interface

The binary analyst can easily navigate directly to the location of CURE
Assistant’s discovered cues within the assembly code to view the artifact in its
context among the rest of the code. CURE Assistant also provides an overview
of potential behaviors for the binary under scrutiny based on the binary artifacts
found. Each behavior is called a recipe within CURE Assistant and each recipe
may have one or more artifacts associated with it. The list of matched and
partially-matched behaviors enhances the analyst’s decision-making capability
by providing several potential behavior hypotheses to consider and further
investigate. A novice practitioner may not have enough background knowledge
in the SRE domain to recognize the cues within the assembly code or associate
the cues with categories of program behavior. CURE Assistant augments the
novice binary analyst’s cognitive process via its identification of artifacts and
association of those artifacts with known program behaviors. By selecting a
recipe’s artifact further information about the artifact, such as parameter values

The Colloquium for Information System Security Education (CISSE)
June, 2019

15

for a function call, is displayed. In addition, the cognitive load of the novice is
decreased as the complete list of interesting cues is available to be pursued later
without the analyst having to keep track of each of the cues and their locations.

Each recipe of program behavior is stored as a JSON (JavaScript Object
Notation) formatted file. Additional recipes with their associated artifact
descriptions can be easily created and added to CURE Assistant’s list of
searchable behaviors. A user may select or unselect specific program behavior
recipes to look for as they analyze a particular binary. Some of the program
behaviors to choose from include Windows registry modification, service and
thread manipulation, network connectivity, and Windows Native API library
usage.

Initial use of CURE Assistant has shown it to be helpful in highlighting
important cues and relating them together with program behavior concepts for
novice binary analysts. Additional expert validation of the CURE cognitive
model and further study of CURE Assistant in both training and classroom
settings is planned.

5. CONCLUSION

Software reverse engineering is a cognitively challenging task. Reverse
engineers need advanced automation support created to complete their critical
work in a timely and effective manner. CURE Assistant illustrates the potential
benefits to novice binary analysts when they have access to training and tools
that reflect and augment the cognitive processes used by professionals.
Utilizing a software reverse engineering cognitive model, such as the one
proposed in this paper, will bring significantly enhanced system automation
and interfaces for cyber security professionals as they extract program intent
from complex binary executable files.

REFERENCES

[1] United States Air Force Scientific Advisory Board, “Report on Implications of
Cyber Warfare, Volume 1: Executive Summary and Annotated Brief,” 2007.

The Colloquium for Information System Security Education (CISSE)
June, 2019

16

[2] C. Treude et al., “An exploratory study of software reverse engineering in a
security context,” 2013 20th Working Conference on Reverse Engineering
(WCRE), vol. 0, pp. 184–188, 2011.

[3] D. Song et al., “Bitblaze: A new approach to computer security via binary
analysis,” in In Proceedings of the 4th International Conference on Information
Systems Security (ICISS). Springer, 2008, pp. 1–25.

[4] G. Gannod and B. Cheng, “A formal approach for reverse engineering: a case
study,” in Reverse Engineering, 1999. Proceedings. Sixth Working Conference
on, Oct 1999, pp. 100–111.

[5] S. Donovan and A. Scott, “Cybersecurity strategy and implementation plan
(csip) for the federal civilian government (m-16-04),” Office of Management
and Budget, 2015. [Online]. Available:
https://www.hsdl.org/?abstract&did=788143

[6] A. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed. Pearson
Prentice-Hall, 2014.

[7] A. Smith et al., “The role of expert systems in reverse code engineering tasks,”
in 9th International Conference on Cyber Warfare and Security (ICCWS
2014),West Lafayette, IN, March 2014.

[8] M.-A. Storey, “Theories, methods and tools in program comprehension: Past,
present and future,” in 13th International Workshop on Program Comprehension
(IWPC’05). IEEE, 2005, pp. 181–191.

[9] C. Eagle, The IDA pro book: the unofficial guide to the world’s most popular
disassembler. No Starch Press, 2011.

[10] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery: a
taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, Jan 1990.

[11] A. Bryant et al., “Software reverse engineering as a sensemaking task,” Journal
of Information Assurance and Security, vol. 6, no. 6, pp. 483–494, 2012.

[12] W. Maalej et al., “On the comprehension of program comprehension,” ACM
Trans. Softw. Eng. Methodol., vol. 23, no. 4, pp. 31:1–31:37, Sep. 2014.

The Colloquium for Information System Security Education (CISSE)
June, 2019

17

[13] S. Heelan, “Vulnerability detection systems: Think cyborg, not robot,” IEEE
Security & Privacy, vol. 9, no. 3, pp. 74–77, 2011.

[14] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, “What are ontologies,
and why do we need them?” IEEE Intelligent systems, no. 1, pp. 20–26, 1999.

[15] A. Bryant, “Understanding how reverse engineers make sense of programs from
assembly language representations,” Ph.D. dissertation, Air Force Institute of
Technology, 2012.

[16] C. Zhong et al., “Arsca: a computer tool for tracing the cognitive processes of
cyber-attack analysis,” in 2015 IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision. IEEE,
2015, pp. 165–171.

[17] Z. Sisco, P. Dudenhofer, and A. Bryant, “Modeling information flow for an
autonomous agent to support reverse engineering work,” The Journal of Defense
Modeling and Simulation, vol. 14, no. 3, pp. 245–256, 2017.

[18] P. Dudenhofer and A. Bryant, “Establishing a cognitive understanding of cyber
reverse engineering tasks,” 12th International Conference on Cyber Warfare and
Security (ICCWS), Dayton, OH, 2017.

[19] K. Weigand and R. Hartung, “Abduction’s role in reverse engineering software,”
in Aerospace and Electronics Conference (NAECON), 2012 IEEE National, July
2012, pp. 57–62.

[20] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs.” Cognitive Psychology, vol. 19, no. 3, pp.
295 – 341, 1987.

[21] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: A study
of developer work habits,” in Proceedings of the 28th International Conference
on Software Engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp.
492–501.

[22] V. Fix, S. Wiedenbeck, and J. Scholtz, “Mental representations of programs by
novices and experts,” in Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems, ser. CHI ’93. New York,
NY, USA: ACM, 1993, pp. 74–79.

The Colloquium for Information System Security Education (CISSE)
June, 2019

18

[23] N. Kulkarni and V. Varma, “Supporting comprehension of unfamiliar programs
by modeling an expert’s perception,” in Proceedings of the 3rd International
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, ser. RAISE 2014. New York, NY, USA: ACM, 2014, pp. 19–24.

[24] A. Ko et al., “An exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks,” Software Engineering,
IEEE Transactions on, vol. 32, no. 12, pp. 971–987, Dec 2006.

[25] J. Lawrance et al., “How programmers debug, revisited: An information
foraging theory perspective,” Software Engineering, IEEE Transactions on, vol.
39, no. 2, pp. 197–215, 2013.

[26] T. D. LaToza et al., “Program comprehension as fact finding,” in Proceedings of
the 6th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering, ser.
ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 361–370.

[27] S. R. Tilley, “The canonical activities of reverse engineering,” Annals of
Software Engineering, vol. 9, no. 1-2, pp. 249–271, 2000.

[28] S. A. Douglass and S. Mittal, A Framework for Modeling and Simulation of the
Artificial. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 271–317.

[29] Cedarville University, CURE Assistant, 2019, [Online]. GitHub respository,
https://github.com/CedarvilleCS/CURE-Assistant

[30] B. LaChance, F. Trautmann, J. Tiberg and N. Harris, “C.U.R.E. Assistant
Reverse Engineering Educational Software,” Poster session presented at the
Cedarville University Research & Scholarship Symposium, Cedarville, OH,
April 3, 2019, [Online].
https://digitalcommons.cedarville.edu/research_scholarship_symposium/2019/po
ster_presentations/17/

[31] radare2, [Online]. GitHub respository, https://github.com/radare/radare2

