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Introduction
• Secure coding education is still needed

– U.S. Dept. of Homeland Security has cited 90% of reported security 
incidents result from exploits against defects in design or code of software. 

– Verizon’s 2023 Data Breach Investigation Report stated that software code 
vulnerability exploitation is one of the primary methods by which attackers 
access an organization.

– ACM’s Curriculum Guidelines and recent ABET standards have evolved 
over time to include principles of secure computing. 

– ACM and IEEE Joint Task Force on Computing Curricula developed the 
Information Assurance and Security Knowledge Area.



Introduction (cont.)
• Student security education is lacking

– Security course is either not required or offered as a senior-level class.
– Veracode’s survey of developers and IT professionals found most felt their 

university-provided software security skills were inadequate for their 
industry job requirements

• A more targeted approach might be needed
– The first step is to collect information on the types of vulnerabilities 

produced by students during code development.
– For this work, we will be using the Common Weakness Enumerated (CWE) 

framework which categorizes vulnerabilities and refers to them using their 
CWE-ID



Introduction (cont.)
• The most common types of vulnerabilities studied by software vulnerability researchers 

are as follows:
– (CWE-78) OS command injection 
– (CWE-79) Cross-site scripting 
– (CWE-89) SQL injection
– (CWE-119) Buffer errors
– (CWE-120) Buffer overflow
– (CWE-190) Integer overflow
– (CWE-306) Missing authentication for critical function

• Each of these is contained in the 2022 CWE Top 25 Most Dangerous Software 
Weaknesses



Introduced (cont.)

• The limited existing research (Yilmaz et al.) reports these CWE-IDs. None 
of these are represented in commonly researched vulnerabilities. Students 
should be prepared against commonly experienced vulnerabilities, so they 
are better prepared to make more secure software.



Related Work
• Limited research on the types of 

vulnerabilities produced by students.
• Yilmaz et al. used source code 

vulnerability analysis to study 
vulnerabilities introduced by students in a 
third-year Database Management 
Systems course. The table on the 
previous slide shows the most common 
types of vulnerabilities in their dataset.

• This figure plots the grades awarded to 
each student along with the number of 
vulnerabilities.



Related Work
• Hanif et al. studied software vulnerability detection methods and created a taxonomy of 

research interests.
• Related to this work is that the authors found that most existing works targeted specific 

types of vulnerabilities for detection.
– These types are common because they are frequently targeted by vulnerability 

detection systems.
• They note there is a lack of a large gold-standard dataset for software vulnerability 

detection. The currently available real-world vulnerability dataset is the National 
Vulnerability Database (NVD) by the National Institute of Science and Technology 
(NIST).

• In general, data can be classified as coming from one of three places: NIST, open-
source software, and private datasets.



Related Work
• Hu et al. studied vulnerabilities in Java 

programming textbooks for an 
undergraduate Java programming course.

• The authors used the open-source 
vulnerability tool called FindBugs to 
analyze the byte code of the sample 
source codes.

• They found many common bugs, raising 
security concerns. Students could 
potentially adopt the coding styles of 
these bugged code samples.

• The table shows the bugs as classified by 
the authors’ vulnerability criteria.



Related Work

• Much work has been put into vulnerability detection and secure coding
• Lack of focus on the types of vulnerabilities produced by Computer 

Science students and graduates.
• This lack of analysis also pairs with a lack of directed pedagogy towards 

curbing the kinds of software vulnerabilities produced during the education 
process.



Methodology

• Using existing static analysis tools, we attempted to answer the 
following research questions:
– RQ1: What are the most common software vulnerabilities 

produced by CS2 students in their assignment submission 
code?

– RQ2: How do these software vulnerabilities compare and 
contrast with the types of commonly researched 
vulnerabilities?



Methodology: Dataset
• We generated our dataset by analyzing the Github assignment submissions for a 

Georgia Southern University Programming Principles II course over the 2017-2023 
school years.

• 3537 total assignment submissions (excluding empty projects).
• Assignments consisted of object-oriented assignment using the Java programming 

language.
• Each assignment was compiled before analysis, and each was grouped by year and 

semester.
• Our vulnerability tool reported all potential vulnerabilities grouped by CWE-ID. These 

CWE-ID classifications are grouped per student and per semester to discover the most 
common software vulnerabilities produced in assignment code.



Methodology: Static Analysis Tool

• We used Sonarqube Community Edition to analyze student assignment 
submissions for vulnerabilities and weaknesses.

• Sonarqube is a self-managed static analysis tool for continuous codebase 
inspection.

• Its quality model has different types of rules: reliability (bug), 
maintainability (code smell), and security (vulnerability and hotspot) rules.

• For this research, we are only considering issues that have a direct CWE-
ID mapping, which is indicated by an issue having “cwe” as a tag. These 
are extracted for later analysis.



• Sonarqube 
indicates the bugs, 
code smells, and 
vulnerabilities by 
line, as shown in 
the figure.

Example Assignment Analysis



• This figure shows a 
description of a bug 
issue and the 
related CWE-IDs.

Example Assignment Analysis



Methodology

• To answer RQ1, we used the analysis produced by Sonarqube and 
extracted the related CWE-IDs for each issue.

• To answer RQ2, we used the findings from RQ1 and compared the results 
with the commonly researched vulnerabilities as established by Hanif et al. 
and reported by Yilmaz et al.
– Hanif et al. established commonly researched CWE-IDs: 78, 89, 119, 

120, 190
– Yilmaz et al. reported CWE-IDs produced by students: 259, 20, 564, 

943, 480, 315, 117, 532, 778, 521, 311, 614.



Results: RQ1

• Statistics measures of 
vulnerabilities found:
– Mean: 4.37
– Median: 2.0
– Mode: 0
– Min: 0
– Max: 76
– St. Dev.: 6.55
– Variance: 42.92
– Skewness: 2.83



Results: RQ1
• Of the 3537 assignments, 1442 assignment 

submissions did not have a mapped CWE-ID.
– Potentially attributed to simplistic assignment 

submissions or blind spots in analysis software
• Heavily right-skewed, indicating only a small 

portion have a large number of mapped CWE-IDs.
– Only 134 assignments had 20 or more CWE-

IDs.
– Only 558 assignments had 10 or more CWE-

IDs.
• Figure shows average assignment vulnerabilities 

by semester and year.



Results: RQ1

• Most frequent CWE-IDs are shown in figure.



Results: RQ2
• Of the Hanif et al. established commonly research vulnerabilities (CWE-IDs 78, 

89, 119, 120, 190, and 306), only CWE-190 Integer Overflow or Wraparound 
was found to be represented in student assignment submissions. This CWE-ID 
had 538 occurrences in the 3537 assignment submissions.

• Of the Yilmaz et al. reported vulnerabilities produced by students (CWE-IDs 
259, 20, 564, 943, 480, 315, 117, 532, 778, 521, 311, and 614), only CWE-259 
Use of Hard-coded Password was found to be commonly represented in both 
datasets. This CWE-ID ha 41 occurrences in the submissions.

• The contrast in found CWE-IDs could be attributed to course level, 
programming language, or assignment requirements.

• Overall, there is little overlap, indicating a lack of consensus on what 
vulnerabilities are produced by students.



Discussion and Conclusion

• We studied the types of vulnerabilities produced by students in a CS2 
course.

• We compared these vulnerabilities with the existing limited research on 
what types of vulnerabilities are commonly produced by students, and by 
what is commonly research is vulnerability detection studies.

• We found there is little consensus on the types of vulnerabilities produced 
by students and what is commonly researched.



Future Work
• More work needs to be done to establish the context in which vulnerabilities 

are produced
– Programming Level
– Programming Language
– Developer Experience
– Software Requirements

• Work will need to be done in adjusting existing pedagogy to reduce the 
introduction of the most common vulnerabilities.

• This work could potentially inform the Computer Science curriculum design in 
terms of software security and secure coding.
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