
Assessing Common Software Vulnerabilities in 
Undergraduate Computer Science Assignments

Presented by: Andrew Sanders, Augusta University
Dr. Gursimran Singh Walia, Augusta University
Dr. Andrew Allen, Georgia Southern University



Introduction
• Secure coding education is still needed

– U.S. Dept. of Homeland Security has cited 90% of reported security 
incidents result from exploits against defects in design or code of software. 

– Verizon’s 2023 Data Breach Investigation Report stated that software code 
vulnerability exploitation is one of the primary methods by which attackers 
access an organization.

– ACM’s Curriculum Guidelines and recent ABET standards have evolved 
over time to include principles of secure computing. 

– ACM and IEEE Joint Task Force on Computing Curricula developed the 
Information Assurance and Security Knowledge Area.



Introduction (cont.)
• Student security education is lacking

– Security course is either not required or offered as a senior-level class.
– Veracode’s survey of developers and IT professionals found most felt their 

university-provided software security skills were inadequate for their 
industry job requirements

• A more targeted approach might be needed
– The first step is to collect information on the types of vulnerabilities 

produced by students during code development.
– For this work, we will be using the Common Weakness Enumerated (CWE) 

framework which categorizes vulnerabilities and refers to them using their 
CWE-ID



Introduction (cont.)
• The most common types of vulnerabilities studied by software vulnerability researchers 

are as follows:
– (CWE-78) OS command injection 
– (CWE-79) Cross-site scripting 
– (CWE-89) SQL injection
– (CWE-119) Buffer errors
– (CWE-120) Buffer overflow
– (CWE-190) Integer overflow
– (CWE-306) Missing authentication for critical function

• Each of these is contained in the 2022 CWE Top 25 Most Dangerous Software 
Weaknesses



Introduced (cont.)

• The limited existing research (Yilmaz et al.) reports these CWE-IDs. None 
of these are represented in commonly researched vulnerabilities. Students 
should be prepared against commonly experienced vulnerabilities, so they 
are better prepared to make more secure software.



Related Work
• Limited research on the types of 

vulnerabilities produced by students.
• Yilmaz et al. used source code 

vulnerability analysis to study 
vulnerabilities introduced by students in a 
third-year Database Management 
Systems course. The table on the 
previous slide shows the most common 
types of vulnerabilities in their dataset.

• This figure plots the grades awarded to 
each student along with the number of 
vulnerabilities.



Related Work
• Hanif et al. studied software vulnerability detection methods and created a taxonomy of 

research interests.
• Related to this work is that the authors found that most existing works targeted specific 

types of vulnerabilities for detection.
– These types are common because they are frequently targeted by vulnerability 

detection systems.
• They note there is a lack of a large gold-standard dataset for software vulnerability 

detection. The currently available real-world vulnerability dataset is the National 
Vulnerability Database (NVD) by the National Institute of Science and Technology 
(NIST).

• In general, data can be classified as coming from one of three places: NIST, open-
source software, and private datasets.



Related Work
• Hu et al. studied vulnerabilities in Java 

programming textbooks for an 
undergraduate Java programming course.

• The authors used the open-source 
vulnerability tool called FindBugs to 
analyze the byte code of the sample 
source codes.

• They found many common bugs, raising 
security concerns. Students could 
potentially adopt the coding styles of 
these bugged code samples.

• The table shows the bugs as classified by 
the authors’ vulnerability criteria.



Related Work

• Much work has been put into vulnerability detection and secure coding
• Lack of focus on the types of vulnerabilities produced by Computer 

Science students and graduates.
• This lack of analysis also pairs with a lack of directed pedagogy towards 

curbing the kinds of software vulnerabilities produced during the education 
process.



Methodology

• Using existing static analysis tools, we attempted to answer the 
following research questions:
– RQ1: What are the most common software vulnerabilities 

produced by CS2 students in their assignment submission 
code?

– RQ2: How do these software vulnerabilities compare and 
contrast with the types of commonly researched 
vulnerabilities?



Methodology: Dataset
• We generated our dataset by analyzing the Github assignment submissions for a 

Georgia Southern University Programming Principles II course over the 2017-2023 
school years.

• 3537 total assignment submissions (excluding empty projects).
• Assignments consisted of object-oriented assignment using the Java programming 

language.
• Each assignment was compiled before analysis, and each was grouped by year and 

semester.
• Our vulnerability tool reported all potential vulnerabilities grouped by CWE-ID. These 

CWE-ID classifications are grouped per student and per semester to discover the most 
common software vulnerabilities produced in assignment code.



Methodology: Static Analysis Tool

• We used Sonarqube Community Edition to analyze student assignment 
submissions for vulnerabilities and weaknesses.

• Sonarqube is a self-managed static analysis tool for continuous codebase 
inspection.

• Its quality model has different types of rules: reliability (bug), 
maintainability (code smell), and security (vulnerability and hotspot) rules.

• For this research, we are only considering issues that have a direct CWE-
ID mapping, which is indicated by an issue having “cwe” as a tag. These 
are extracted for later analysis.



• Sonarqube 
indicates the bugs, 
code smells, and 
vulnerabilities by 
line, as shown in 
the figure.

Example Assignment Analysis



• This figure shows a 
description of a bug 
issue and the 
related CWE-IDs.

Example Assignment Analysis



Methodology

• To answer RQ1, we used the analysis produced by Sonarqube and 
extracted the related CWE-IDs for each issue.

• To answer RQ2, we used the findings from RQ1 and compared the results 
with the commonly researched vulnerabilities as established by Hanif et al. 
and reported by Yilmaz et al.
– Hanif et al. established commonly researched CWE-IDs: 78, 89, 119, 

120, 190
– Yilmaz et al. reported CWE-IDs produced by students: 259, 20, 564, 

943, 480, 315, 117, 532, 778, 521, 311, 614.



Results: RQ1

• Statistics measures of 
vulnerabilities found:
– Mean: 4.37
– Median: 2.0
– Mode: 0
– Min: 0
– Max: 76
– St. Dev.: 6.55
– Variance: 42.92
– Skewness: 2.83



Results: RQ1
• Of the 3537 assignments, 1442 assignment 

submissions did not have a mapped CWE-ID.
– Potentially attributed to simplistic assignment 

submissions or blind spots in analysis software
• Heavily right-skewed, indicating only a small 

portion have a large number of mapped CWE-IDs.
– Only 134 assignments had 20 or more CWE-

IDs.
– Only 558 assignments had 10 or more CWE-

IDs.
• Figure shows average assignment vulnerabilities 

by semester and year.



Results: RQ1

• Most frequent CWE-IDs are shown in figure.



Results: RQ2
• Of the Hanif et al. established commonly research vulnerabilities (CWE-IDs 78, 

89, 119, 120, 190, and 306), only CWE-190 Integer Overflow or Wraparound 
was found to be represented in student assignment submissions. This CWE-ID 
had 538 occurrences in the 3537 assignment submissions.

• Of the Yilmaz et al. reported vulnerabilities produced by students (CWE-IDs 
259, 20, 564, 943, 480, 315, 117, 532, 778, 521, 311, and 614), only CWE-259 
Use of Hard-coded Password was found to be commonly represented in both 
datasets. This CWE-ID ha 41 occurrences in the submissions.

• The contrast in found CWE-IDs could be attributed to course level, 
programming language, or assignment requirements.

• Overall, there is little overlap, indicating a lack of consensus on what 
vulnerabilities are produced by students.



Discussion and Conclusion

• We studied the types of vulnerabilities produced by students in a CS2 
course.

• We compared these vulnerabilities with the existing limited research on 
what types of vulnerabilities are commonly produced by students, and by 
what is commonly research is vulnerability detection studies.

• We found there is little consensus on the types of vulnerabilities produced 
by students and what is commonly researched.



Future Work
• More work needs to be done to establish the context in which vulnerabilities 

are produced
– Programming Level
– Programming Language
– Developer Experience
– Software Requirements

• Work will need to be done in adjusting existing pedagogy to reduce the 
introduction of the most common vulnerabilities.

• This work could potentially inform the Computer Science curriculum design in 
terms of software security and secure coding.


	Assessing Common Software Vulnerabilities in Undergraduate Computer Science Assignments
	Introduction
	Introduction (cont.)
	Introduction (cont.)
	Introduced (cont.)
	Related Work
	Related Work
	Related Work
	Related Work
	Methodology
	Methodology: Dataset
	Methodology: Static Analysis Tool
	Example Assignment Analysis
	Example Assignment Analysis
	Methodology
	Results: RQ1
	Results: RQ1
	Results: RQ1
	Results: RQ2
	Discussion and Conclusion
	Future Work

